
CROSSTALK The Journal of Defense Software Engineering 13September 1998

Most organizations that
start out on the road toward
 software process improve-

ment (SPI) using the Capability Matu-
rity Model (CMM) for Software have no
clue what this endeavor means. Most
managers get sold on the idea based on
competitive practices within the indus-
try—“keeping up with the Joneses.”
This article discusses some common
misconceptions about the torturous path
to achieving a maturity level.

“What, me change? You’ve got
to be kidding!”
Managers think the CMM focuses on
changing the way the developers work.
What happens is that the CMM forces
management to change the way it man-
ages projects. By requiring the develop-
ment team to collect project data and
report it to management, management
becomes more aware of the project
management process. In some organiza-
tions, managers do not want to know in
detail what is really happening on their
projects. The idea that someone would
report to them actual schedule slippages
and try to determine a standard devia-
tion becomes incomprehensible. It is
not uncommon to shoot the messenger.

What the CMM really provides is
the ability to shape your own destiny. By
generating procedures to do work, you
control your work environment. If man-
agement understood that, they probably
would not start CMM activities.

“We can’t do this. We have to
support our users.”
It is amazing how often supporting the
users is used as an excuse to not do

CMM work. The CMM absolutely
advocates supporting your users. That is
why we are in this business. In case we
have forgotten—no users, no work.
Ultimately, by following CMM guide-
lines, supporting the user becomes
easier because the ground rules have
been established.

Change involves not only the devel-
opers but also management and the user
community. No matter your position,
your attitude plays an important role in
SPI. For example, the way you do work
in your twenties should be different
from the way you do work in your for-
ties, or at least it should be based on
learning. If you are still doing things the
way you always have, you need to re-
examine your work and probably your
life—and you are probably not the best
person to be put in charge of the im-
provement effort. CMM work is all
about change, something such people
apparently know nothing about.

Users also need to change. Your
users do not have the right to kill you,
but that is what they are doing to our
aging work force by creating unneces-
sary stress that contributes to heart
attacks, cancers, and other ills. Control
is the real issue. People who believe they
have some control over their lives tend
to be happier and live longer (so say the
psychologists). So, to gain control of
your project, you must control your
users. Why should you accept an
“emergency” request at 4 p.m. Friday
that will keep you at work all night?
Especially when it turns out that that
particular user always turns in an
“emergency” request at 4 p.m. on Fri-
day and does not need the information

until later the following week? Those
users need to be trained in becoming
pro-active and basically getting their act
together. If everything is an emergency,
nothing is an emergency. This sounds
like an area in need of improvement.

“Standards? We don’t need
standards!”
Nowhere in the CMM does it say that
standards are required. The CMM does
not absolutely require anything. The
model is not a step-by-step how-to
model—it is a framework, a guideline.
It tells you what you need to do but not
how to do it. However, the CMM pre-
supposes that you have standards and
are trying to follow them. The stan-
dards they presuppose you already have
are for products like coding standards,
templates for a requirements specifica-
tion, or test case scenarios.

Following standards institutes a
basic structure within an organization.
So, if you do not have any standards,
get some. One place to search is De-
partment of Defense (DoD) military
standards, even if you are not a DoD
organization. Start searching the Web
for military standards as well as for the
methods used to implement SPI. They
are available, and they are free.

Just do not be anal when you inter-
pret this information (see item 10,
“Keep It Simple”). And all standards
should be tailored for use in your orga-
nization. Do not think that you can use
the same standards you used from the
place you used to work in your new
workplace. They do not fit. They can-
not be used. They can be used as a
target, but you will need to tailor them.

Ten Things Your Mother Never Told You
About the Capability Maturity Model

Margaret Kulpa
Abacus Technology

This article discusses the 10 most common misconceptions the author has had to over-
come concerning software process improvement and the Software Capability Maturity
Model. Topics include management vs. developer changes required, having standards in
place, consensus vs. steamroller approaches, keeping it simple, and why you cannot ex-
pect software process improvement to work unless you give your employees time to do it.



14 CROSSTALK The Journal of Defense Software Engineering September 1998

“Everybody knows what the
process is. What’s the big
deal?”
Everybody knows what a process is
until they try to define it in detail and
write procedures that describe how to
follow the process. Then, they shift
back to documenting who needs to do
something rather than on how that
something is done. They also fall back
on product standards (a form for docu-
menting defects found during peer
reviews) instead of process standards
(how to perform the peer review, how to
detect defects, and how to complete the
form). Telling me that “it is the project
manager’s responsibility to determine
schedule estimates” does not tell me
how that manager is supposed to derive
those estimates.

“Collaborative and achieving
consensus …”
CMM teams usually try to work
collaboratively and make decisions by
consensus. This concept is great and
fosters buy-in and ownership but is
extremely time-consuming and expen-
sive. Consensus is not majority rules.
Consensus means that everyone can live
with the decision—they may not love
it, but they can live with it. This way of
working takes time. If you are on a
tight schedule, (CMM work always is)
you may need to stop the philosophiz-
ing and touchy-feely stuff and steamroll
some folks. You will never get 100 per-
cent buy-in from everyone. Take what
you can get, and get those procedures
written down.

“The CMM requires that a
good process be in place.”
No. It requires that a process be in place
that is documented and followed. At
first, your process could be awful. That
is where the “continuous process im-
provement” concept comes in. After
you hammer out a process, it is piloted,
and projects start to use it, refinements
will be made until (it is hoped) the
process becomes “good.” But to start,
get something down on paper and use
it. Clean it up as you go.

“We need to model our as-is
process in order to create our
to-be process.”
Yes, but I find that organizations take
up to a year to do this, only to find
that their processes are too ad hoc to
be used as a baseline of good practices
and lessons learned. I suggest doing a
software capability evaluation (which
is now done for internal software pro-
cess improvement) or a CMM-based
Appraisal for Internal Process Im-
provement. These assessment methods
can quickly determine consistent prac-
tices across the organization as well as
strengths and weaknesses. Measurable
action plans can be generated based on
the results. Tracking progress can also
be measured. The thing to remember
before starting CMM activities is to
determine ahead of time how to mea-
sure success. Modeling current pro-
cesses is great—but will you ever see a
return on that investment?

“Tie CMM activities to your
business objectives.”
Of course. There are some things in the
CMM that may not make sense for
you. For example, having a separate
group to do software quality assurance
(SQA) may not work if you only have
10 people in your company. The chal-
lenge is to figure out a way to perform
quality assurance reviews and oversight
in an objective, independent manner.
And do not confuse “organization” with
“company” or enterprise. An organiza-
tion achieves a maturity level rating—
not one project, not an entire company.
Without going into detail, an organiza-
tion generally consists of three to eight
projects reporting to the same person,
like a director or a division head—not
an entire company (like IBM).

Do not get stupid about “business
objectives.” Ultimately, most organiza-
tions’ business objectives are to achieve
Level X by a certain date. If you are not
currently doing SQA and do not want
to do SQA (because of the cost and
because it is overhead) yet you must
achieve the level, do not try to be clever
and tailor SQA out of the CMM pro-
cess. Any certified evaluation team will
catch you.

“Better, cheaper, faster.”
This really irks me. When the CMM
was written, most organizations had not
yet begun the downsizing frenzy. Nowa-
days, however, organizations have cut
their staff to the bare minimum. Man-
agement loves the maxim “better,
cheaper, faster” and eventually, you will
be able to turn out software of better
quality, more quickly, and less expen-
sively—but not at first! The average
time to obtain your return on invest-
ment is three to five years.

SPI is expensive. Most organizations
either hire outside consultants to start
the journey or build it from the inside.
Even if you are not hiring consultants,
taking people away from coding, i.e.,
“real work,” and having them do SPI
costs you time, money, and schedule
slippage. So management instead assigns
SPI work in addition to existing work to
an organization with extreme resource
constraints, and it fails. You cannot
squeeze additional effort from people
who are already overworked. And having
these people “work weekends, holidays, I
don’t care what it takes” violates the
CMM principle of establishing and
following reasonable plans.

“Keep it simple.”
I like this one. Most organizations start
off believing that they can keep their
procedures simple—until they try to do
it. Writing procedures that are simple
and easy to follow, yet are thorough and
complete, is extremely difficult. That is
why the people on your teams need to
be able to write and like to write as well
as have a technical background and
knowledge of the organization.

Managers in organizations today
seem to feel that one person can wear
many hats, i.e., a Powerbuilder pro-
grammer can also write procedures for
how to write a requirements specifica-
tion. Do you know what happens when
you ask that unfortunate “techie” to do
that? He breaks out in a cold sweat.
Although some people are adaptable
and can do many jobs, not everyone
can do everything well. Different skill-
sets are required for different jobs.

Another problem is that teams often
catch the improvement fever. They

Software Process Improvement



CROSSTALK The Journal of Defense Software Engineering 15September 1998

want to improve everything. The challenge is to stay focused
and use the CMM for software as your guide, but do not
attack more than you can handle at one time. Remember:
SPI is continuous improvement. It is iterative. Do what you
can do in the time allotted, then go back and pick out more
things once you have been allocated more time to do them.

Conclusion
Although there are other points to ponder when attempting
this journey down the CMM path, these are the most fre-
quently found errors made that I have documented. Good
luck on your journey. u

About the Author
Margaret Kulpa is a consultant with Abacus Technology Corp.
in Chevy Chase, Md. She is a certified lead evaluator and is
authorized to teach the SEI’s Introduction to CMM and the
Software Capability Evaluation class. She has performed SPI
duties for over 15 corporations and has evaluated over 30 orga-
nizations. She has also written and taught Key Process Area
classes for Levels 2 and 3.

Abacus Technology
5454 Wisconsin Ave., Suite 1100
Chevy Chase, MD 20815
Voice: 301-951-1712
Fax: 301-907-8508
E-mail: kulpamk@songs.sce.com

be performed in an action plan allows
the Measurement Team and manager to
track progress with respect to the imple-
mentation of the measurement activities.
An outline for an action plan follows:

1.0 Objective.
2.0 Description.
2.1 Background.
2.2 Goals.

• Business Goals.
• Measurement Goals.
• The Goals of This Plan.

2.3 Scope.
2.4 Relationship to Other Software

Process Improvement Efforts.
2.5 Relationship to Other Functional

Activities.
3.0 Implementation.
3.1 Activities, Products, and Tasks.
3.2 Schedule.
3.3 Resources.
3.4 Responsibilities.
3.5 Measurement and Monitoring.
3.6 Assumptions.
3.7 Risk Management.
4.0 Sustained Operation.

As the measurement activities are
being planned, be sure to consider how
the quality and success of the measure-
ment activities will be measured. Build-
ing the need to measure the quality and
success of the measurement activities
into the measurement processes will help
keep the activities aligned with the needs
of the organization and mitigate some of
the more common reasons why measure-
ment fails. These reasons include lack of
use of the data, personnel not under-
standing why the data need to be col-
lected, and measurement viewed as an

expendable, overhead activity. Following
the goal-driven process outlined above
provides a means to involve stakehold-
ers, create understanding, and make
measurement a part of the way the orga-
nization conducts business. Maintaining
alignment between the measurement
activities and the information needs of
the organization helps the organization
leverage information, which may other-
wise not be captured, to enhance its
performance. In summary, the goal-
driven software measurement process
directs attention toward measures of
importance rather than measures that are
merely convenient. u

About the Author
Dave Zubrow is team
leader for software
engineering measure-
ment and analysis for
the SEI and is assistant
director of analytic
studies for Carnegie

Mellon University. He is an Assocation
for Software Quality Certified Software
Quality Engineer and a member of the
Software Division Council for the Ameri-
can Society for Quality Control. He has a
bachelor’s degree from Penn State Univer-
sity and a master’s degree and a doctorate
from Carnegie Mellon University.

Voice: 412-268-5243
Fax : 412-268-5758
E-mail: dz@sei.cmu.edu

References
1. Schiemann, William and John Lingle,

“Seven Greatest Myths of Measure-

ment,” IEEE Engineering Management
Review, Spring 1998, pp. 114-116.

2. Park, R., W. Goethert, and W. Florac,
Goal-Driven Software Measurement,
(CMU/SEI 96-HB-002) Software Engi-
neering Institute, Carnegie Mellon Uni-
versity, 1996.

3. PSM96, Practical Software Measurement:
A Guide to Objective Program Insight,
Washington, D.C., Joint Logistics Com-
manders, Joint Group on Systems Engi-
neering, March 1996.

4. Basili, V. and D. Weiss, “A Methodology
for Collecting Valid Software Engineer-
ing Data,” IEEE Transactions on Soft-
ware Engineering, Vol. 10, No. 6, 1984,
pp. 728-738.

5. Briand, L., C.M. Differding, and H.D.
Rombach, “Practical Guidelines for
Measurement-Based Process Improve-
ment,” Software Process Improvement
and Practices, Vol. 2, 1996, pp. 253-287.

6. Park, Robert E., et al., Software Size
Measurement: A Framework for Counting
Source Statements (CMU/SEI-92-TR-
20), Software Engineering Institute,
Carnegie Mellon University, Pittsburgh,
Pa., September 1992.

7. Florac, William A., et al., Software Qual-
ity Measurement: A Framework for Count-
ing Problems and Defects (CMU/SEI-92-
TR-22), Software Engineering Institute,
Carnegie Mellon University, Pittsburgh,
Pa., September 1992.

8. Goethert, W., et al., Software Effort Mea-
surement: A Framework for Counting Staff-
Hours (CMU/SEI-92-TR-21), Software
Engineering Institute, Carnegie Mellon
University, Pittsburgh, Pa., September
1992.

METRICS, from page 26

Ten Things Your Mother Never Told You About the Capability Maturity Model


